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Onset of mixing layer instability in flow past a plate
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Department of Aerospace Engineering, Indian Institute of Technology Kanpur, UP 208 016, India

SUMMARY

A global stability analysis of the flow past a flat plate, normal to the flow, is carried out to determine the
critical Re for the onset of convective instability of the mixing-layer-type modes. To suppress the primary
wake mode, which leads to von Karman vortex shedding, flow past one half of the plate is studied and
symmetry conditions are enforced along the wake centerline. The linearized perturbation equations for
an incompressible flow are written in a moving frame of reference that travels with the perturbation and
solved using a stabilized finite element method. The critical Re for the onset of convective instability
is found to be 22, approximately, for H =5. Here, H is the distance of the lateral boundary from the
plate centerline. Computations have also been carried out for H =10 and 20. The critical Re decreases
with increase in H . Excellent agreement is observed between the results from global stability analysis
and direct time integration of linearized disturbance equations. The results from the global analysis are
compared with earlier reported results from local analysis of a Gaussian wake profile. Copyright q 2008
John Wiley & Sons, Ltd.

Received 3 January 2008; Revised 13 May 2008; Accepted 18 May 2008

KEY WORDS: global instability; convective instability; shear layer instability; flat plate; linear stability
analysis; stabilized finite element method

1. INTRODUCTION

Bluff body flows are associated with various instabilities. It is possible to suppress the primary
instability of the wake, which leads to the von Karman-type vortex shedding, by introducing a
splitter plate along the wake centerline in a two-dimensional flow. Alternatively, one can consider
only one half of the flow on either side of the wake centerline. Castro [1] presented results for
the (in-)stability of laminar flow past a plate placed normal to the flow in a channel with slip
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1036 S. MITTAL

Figure 1. Flow past a flat plate of unit half-width normal to the flow: schematic of the computational
domain and the boundary conditions. Only one half of the flow plane (0�y�H ) is computed.

walls. Symmetry conditions at the wake centerline were assumed. Only one half of the flow was
considered. This, therefore, precludes the von Karman-type vortex shedding modes.

Fornberg [2] and Gajjar and Azzam [3] presented numerical results for steady flow past cylinder.
Again, they utilized only one half of the domain with respect to the wake centerline. They suggest
that this setup can be thought of representing a more realistic situation wherein the cylinder
being considered is just one of the infinite cascade of identical cylinders located in uniform flow.
Similarly, flow past one half of a plate represents a symmetric flow associated with a cascade
of identical plates [1]. Figure 1 shows the schematic for such a setup. The half-width of the
plate is unity. The free-stream speed, U , is used to non-dimensionalize the velocity field. All the
dimensions are non-dimensionalized with half plate width. The Reynolds number, Re, is based on
the half plate width and the free-stream speed.

Linear stability theory for parallel flows has been utilized in the past to understand the stability
of wakes. For example, Hultgren and Aggarwal [4] considered a Gaussian wake profile given as
u∗ =1−se−y2 ln(2), where the speed is normalized by the maximum value, Um, y is normalized by
the wake’s half-width and s is a measure of the level of reverse flow. They found that the critical Re
for the von Karman-type modes is 3.76, while it is 53.0 for the modes when symmetry conditions
are enforced on wake centerline, i.e. at y=0. Interestingly, the critical Re is independent of the
reverse flow parameter, s. The Re, in their study, is based on the wake half-width and the maximum
velocity difference, sUm. The stability of the mixing-layer-type modes, for symmetry conditions
at wake centerline, was further studied by Castro [1]. A linear stability analysis (LSA) was carried
out for various values of H . This was achieved by setting a free-slip condition on the velocity
at the lateral boundary of the domain. It was found that the critical Re increases with increase
in blockage. The critical Re for convective instability for H =100, 10, 5 and 3 was found to be
52.99, 53.06, 57.30 and 97.11, respectively. It is noted that the results for H =100 are in very
good agreement with those for an unbounded domain computed by Hultgren and Aggarwal [4].

The aim of the present study is to determine the critical Reynolds number, Rec, for the onset
of convective instability via a global LSA of the non-parallel flow past a flat plate. Only one
half of the plate is considered and symmetry conditions are imposed at the wake centerline. This,
therefore, allows one to determine the Rec for the onset of shear layer/mixing-layer-type modes.
The value of Rec predicted by the global LSA is confirmed via looking at the temporal growth of
the energy of the disturbance field obtained from direct time integration (DTI) of the linearized
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disturbance equations (LDEs). The results from the global analysis are compared with the already
available results for the local analysis of the Gaussian wake profile [1, 4].

Recently, Mittal and Kumar [5] proposed a new method to carry out the global analysis for
convective instabilities in a general, non-parallel flow. In this method the equations are written
in a frame of reference that moves with the disturbance. Therefore, the disturbances that are
convectively unstable appear to be absolutely unstable in the moving frame. A stabilized finite
element formulation is utilized to solve the disturbance equations. We utilize the same method to
conduct the stability analysis for flow past a plate placed normal to the flow. The method is very
general and can also be utilized to find the onset of absolute instability. In the present study we
restrict our attention to convective instabilities.

The incompressible flow equations, in the velocity–pressure form, are solved via a stabilized
finite element method. The stabilized formulation is based on the streamline-upwind/Petrov–
Galerkin (SUPG) and pressure-stabilizing/Petrov–Galerkin (PSPG) stabilization techniques [6].
Several element-level integrals are added to the Galerkin formulation to stabilize the compu-
tations against spurious numerical oscillations. The basic Galerkin formulation is unstable for
convection-dominated flows and does not allow one to use equal-order-interpolation velocity–
pressure elements. The time integration of the governing flow equations is done via an implicit
procedure that is second-order accurate. The time steps are chosen to adequately resolve the time-
scales in the physical phenomena. The large-scale coupled non-linear equation systems resulting
from the finite element discretization of the governing equations are solved iteratively by employing
the generalized minimal residual (GMRES) procedure in conjunction with diagonal precondi-
tioners.

2. THE GOVERNING EQUATIONS

2.1. The incompressible flow equations

The equations governing the flow of an incompressible fluid are given by

�

(
�u
�t

+u·∇u−f
)

−∇·r=0 on �×(0,T ) (1)

∇ ·u=0 on �×(0,T ) (2)

where �, u, f and r are the density, velocity, body force and the stress tensor, respectively. For
a Newtonian fluid the stress tensor is given as r=−pI+2�e(u), where e is the strain rate given
as e(u)= 1

2 ((∇u)+(∇u)T). Here p and � are the pressure and coefficient of dynamic viscosity,
respectively. These equations are accompanied with appropriate boundary conditions on the velocity
and stress and an initial condition on the velocity.

2.2. Linearized disturbance equations

Let the unsteady flow, (u, p), be expressed as a combination of the steady flow and the disturbance:
u=U+u′ and p= P+ p′. Here, (U, P) represents the steady-state solution obtained by solving
Equations (1) and (2) without the unsteady terms. u′ and p′ are the perturbation fields of the
velocity and pressure, respectively. Substituting the equations for steady flow for this decomposition
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in Equations (1)–(2) and subtracting from them, one obtains the following equations for the
disturbance fields:

�

(
�u′

�t
+u′ ·∇U+U ·∇u′+u′ ·∇u′

)
−∇·r′ =0 (3)

∇·u′ =0 (4)

Here, r′ is the stress tensor due to the perturbed solution (u′, p′). We further assume that the
disturbances are small and drop the non-linear term. This leads to the LDEs of the form

�

(
�u′

�t
+u′ ·∇U+U ·∇u′

)
−∇·r′ =0 (5)

∇·u′ =0 (6)

2.3. Global LSA

In the past, the study for convective instabilities has mostly been carried out via local analysis. The
local analysis, in the context of non-parallel flows, is carried out on the velocity profiles at certain
chosen stations. This method of local analysis has been applied to the wake of a cylinder [7, 8] and
many other weakly non-parallel flows [9, 10]. On the other hand, several researchers have used
global analysis for investigation of absolute instabilities [11–15]. Recently, Mittal and Kumar [5]
proposed a method for conducting a global analysis for convective stability of non-parallel flows.
They proposed that the disturbance equations be written in the frame of reference of an observer
traveling with the disturbance. In this moving frame a convectively unstable flow is absolutely
unstable and is, therefore, amenable to the global analysis for determining absolute (in-)stability.

Two frames of references are considered. The x-frame refers to the laboratory frame that is fixed
to the body. The basic flow, (U, P), is computed in this frame. The z-frame moves with velocity c
with respect to the laboratory frame. The following transformations define the changes between
the two frames:

x=z+ct, ∇x=∇z,
�
�t

∣∣∣∣
x
= �

�t

∣∣∣∣
z
−c ·∇z (7)

We propose a perturbation field that appears stationary with respect to the moving frame z. In
the laboratory frame the perturbation can be expressed in the following form:

u′(x, t)= û(x−ct)e�t , p′(x, t)= p̂(x−ct)e�t (8)

Since the perturbation is stationary in the moving frame, its instability in this frame of reference is
absolute in nature. Substituting Equation (8) into Equations (5)–(6) and using the transformations
in Equation (7) we obtain

�(�û+ û·∇zU+(U−c) ·∇zû)−∇z · r̂=0 on � (9)

∇z ·û=0 on � (10)

We note that the basic flow, U(x), is computed in the laboratory frame. In the moving frame, the
base flow varies with time. However, at t=0, z=x and one can use the same base flow as computed
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in the stationary frame. In the moving frame, as the perturbation travels downstream it encounters
a different base flow. Therefore, this analysis, for determining the global convective instability, is
valid in an instantaneous sense. � is the eigenvalue of the fluid system and governs its stability. The
solution (U, P) is associated with a convectively unstable mode if the corresponding eigenvalue, �,
has a positive real part. The imaginary part of � is related to the temporal frequency of the
disturbance in the traveling frame.We can determine the influence of the basic flow on a perturbation
traveling with various values of velocity c. For c �=0, the disturbance, after a sufficiently long
time, is convected away. However, an unstable global mode for c=0 stays on and grows (in a
linear framework). Therefore, an instability corresponding to c=0 is an absolute instability. The
boundary conditions for (û, p̂) are the homogeneous versions of the ones for (U, P).

3. PROBLEM SETUP

Figure 1 shows a schematic of the problem setup. The half-width of the plate is unity. The upstream
and downstream boundaries are located at distances Lu and Ld from the plate, respectively. The
distance between the upper boundary and the wake centerline is H . For most of the computations,
in the present study, the various parameters related to the domain are Lu=50, Ld=100 and H =5.
The finite element mesh consists of 28631 nodes and 28050 quadrilateral elements. The plate
thickness is assumed to be zero. However, two sets of nodes are created on the plate to account for
the difference in the pressure on the upstream and downstream face of the plate. The element width,
normal to the plate, for the elements closest to the plate is 0.04. For the unsteady computations,
the time step used is 0.05.

The adequacy of the finite element mesh is demonstrated via carrying out the linear stability
computations for one of the cases with a finer mesh M2. We refer the mesh described above as
mesh M1. Mesh M2 consists of 40386 nodes and 39750 quadrilateral elements. The element width
for this mesh, normal to the plate, for the elements closest to the plate is 0.01. For Re=25 the
most unstable eigenmode, computed with mesh M2, is associated with �r=0.003551 for c=0.56.
The same value for the computations carried out with mesh M1 is 0.003544. The two meshes
yield almost identical solutions. This confirms the adequacy of mesh M1.

Figure 1 also shows the boundary conditions used for computing the flow. Free-stream value is
assigned to the velocity at the upstream boundary. At the downstream boundary, a Neumann-type
boundary condition for the velocity is specified, which corresponds to zero stress vector. Along the
wake centerline as well as on the upper boundary symmetry boundary conditions are employed,
i.e. the component of velocity normal to and the component of stress vector along the boundary are
prescribed a zero value. For the LSA and the disturbance equations, the boundary conditions on
the perturbations are the homogeneous versions of the ones used for determining the steady-state
solution.

4. THE FINITE ELEMENT FORMULATION

4.1. The incompressible flow equations

Consider a finite element discretization of the domain, �, into subdomains �e, e=1,2, . . . ,nel,
where nel is the number of elements. Based on this discretization, let Sh

u and Sh
p be the
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finite element trial function spaces for velocity and pressure, respectively, and Vh
u and Vh

p be
the weighting function spaces. The stabilized finite element formulation of Equations (1)–(2) is
expressed as follows: find uh ∈Sh

u and ph ∈Sh
p such that ∀wh ∈Vh

u, q
h ∈Vh

p∫
�
wh ·�

(
�uh

�t
+uh ·∇uh−f

)
d�+

∫
�
e(wh) :r(ph,uh)d�

+
∫

�
qh∇ ·uh d�+

nel∑
e=1

∫
�e

1

�
(�SUPG�uh ·∇wh+�PSPG∇qh)

·
[
�

(
�uh

�t
+uh ·∇uh−f

)
−∇·r(ph,uh)

]
d�e

+
nel∑
e=1

∫
�e

�LSIC∇ ·wh�∇ ·uh d�e=
∫

�h

wh ·hh d� (11)

where �g and �h are complementary subsets of the boundary � on which Dirichlet and Neumann-
type boundary conditions are assigned as follows:

u=g on �g, n·r=h on �h (12)

where n is the unit normal vector to �h . In the variational formulation given in Equation (11),
the first three terms and the right-hand side constitute the Galerkin formulation of the problem.
It is well known that the Galerkin formulation is unstable with respect to the advection operator
as the cell Reynolds number (based on the local flow velocity and mesh size) becomes larger.
In addition, not all combinations of the velocity and pressure interpolations are admissible in the
Galerkin formulation. Elements that do not satisfy the Babuska–Brezzi condition lead to oscillatory
solutions and, sometimes, no solution at all. To give stability to the basic formulation, a series
of element-level integrals are added. The first series of element-level integrals are the SUPG and
PSPG stabilization terms added to the variational formulations [6]. The SUPG formulation for
convection-dominated flows was introduced by Hughes and Brooks [16] and Brooks and Hughes
[17]. The Petrov–Galerkin term for Stokes flows, to admit the use of equal-order interpolations for
velocity and pressure without producing oscillations in the pressure field, was proposed by Hughes
et al. [18]. Tezduyar et al. [6] proposed a formulation using the SUPG and PSPG stabilizations for
finite Reynolds number flows. The second series of element-level integrals are stabilization terms
based on the least squares of the divergence-free condition on the velocity field. The definition
for �PSPG and �SUPG is given by the following relations based on its values for the advection and
diffusion limits:

�SUPG=�PSPG=
(

1

�2ADV
+ 1

�2DIF

)−1/2

(13)

where

�ADV= he

2‖uh‖ , �DIF= (he)2

12�
(14)

Here, he is the element length and various definitions have been used by researchers in the past.
Mittal [19] conducted a systematic numerical study to investigate the effect of high aspect ratio

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1035–1049
DOI: 10.1002/fld



ONSET OF MIXING LAYER INSTABILITY IN FLOW PAST A PLATE 1041

elements on the performance of the finite element formulation for three commonly used definitions
of he. In this paper we use the definition based on the minimum edge length of an element. The
coefficient �LSIC is defined as

�LSIC=
(

1

�2ADV
+ 1

�2DIF

)−1/2

(15)

where

�ADV= he‖uh‖
2

, �DIF= (he)2(‖uh‖)2
12�

(16)

The non-linear equation system resulting from the finite element discretization of the flow
equations is solved using the GMRES technique [20] in conjunction with diagonal preconditioners.
The implicit method used in the present study allows us to seek steady-state solutions by simply
dropping the unsteady terms in the governing equations.

4.2. The linear stability equations

Let Ŝh
u and Ŝh

p be the finite element trial function spaces and V̂h
u and V̂h

p the weighting function
spaces for the perturbations in the velocity and pressure fields, respectively. The finite element
formulation for the perturbation equations, (9) and (10), is given as follows: find ûh ∈Ŝh

u and
p̂h ∈Ŝh

p such that ∀ŵh ∈V̂h
u and q̂h ∈V̂h

p∫
�
ŵh ·�(�ûh+(Uh−c) ·∇ûh+ ûh ·∇Uh)d�+

∫
�
e(ŵh) :r( p̂h, ûh)d�

+
∫

�
q̂h∇ ·ûh d�+

nel∑
e=1

∫
�e

1

�
(�SUPG�(Uh−c) ·∇ŵh+�PSPG∇q̂h)

·[�(�ûh+(Uh−c) ·∇ûh+ ûh ·∇Uh)−∇·r( p̂h, ûh)]d�e

+
nel∑
e=1

∫
�e

�LSIC∇ ·ŵh�∇ ·ûh d�e=0 (17)

The stabilization coefficients for the LSA are given by the same definition as defined in Equations
(13)–(16) except that they are based on the steady-state velocity field Uh . Equation (17) leads to
a generalized eigenvalue problem of the form AX−�BX =0, where A and B are non-symmetric
matrices. In this study we use the shift-invert transformation in conjunction with the subspace
iteration method [21] to track the eigenvalue with the largest real part.

5. RESULTS

5.1. The steady flow

First, the steady flow is computed for various Re by dropping the time-dependent terms from
Equations (1)–(2). Figure 2 shows the vorticity field and the streamlines in the recirculation
region for the Re=25 and 100 flow. The length of the recirculation bubble at these two values
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Re=25

Re=100

Figure 2. Re=25,100 steady flow past a flat plate: vorticity field and
streamlines in the recirculation region.

-0.20

-0.15

-0.10

-0.05

 0.00

 0.05

 0.0  0.2  0.4  0.6  0.8  1.0  1.2  1.4  1.6

λ r

c

Re=20
Re=21
Re=22
Re=23
Re=25

-0.015

-0.010

-0.005

 0.000

 0.005

 0.010

 0.50  0.52  0.54  0.56  0.58  0.60

λ r

c

Figure 3. Flow past a flat plate: real part of the eigenvalue corresponding to the most
unstable eigenmode for various c and Re.

of Re is ∼10.5 and 41.5 units, respectively. Very good agreement is observed with the results
from other researchers [22]. In all the figures in this paper, the shading in the grey scale represents
vorticity. Darker shades, with respect to the background, refer to negative values, whereas the
lighter shades of grey represent positive vorticity values.

5.2. Linear stability analysis

Once the steady-state solution is available, at each Re, the stability analysis is carried out for
various values of c. In general, the perturbation can travel in any direction. However, in the present
computations c is restricted to the streamwise direction. Therefore, in the remainder of this paper
we refer to it simply by a scalar c.

5.2.1. Critical Re for convective instability. Figure 3 shows the variation in the real part of
eigenvalue for the most unstable eigenmode for various Re and speed of the disturbance. At the
critical Re, for the onset of convective instability, the real part of the eigenvalue, �r, changes the
sign to a positive value for some value of c. At Re=21 and lesser �r is less than zero for all values
of c. The Re=22 flow appears to be marginally unstable for values of c lying between 0.54 and
0.56, approximately. Therefore, for this flow with H =5, the critical Re for the onset of convective
instability is approximately 22. At the onset of the instability �i is found to be 0.
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+0.01

Figure 4. Re=25 flow past a flat plate: vorticity field for the most unstable eigenmode for
various c. The grey scale key is also shown (right).

5.2.2. Re=25 flow. Figure 3 shows the real part of the eigenvalue corresponding to the most
unstable mode for various values of c. Clearly, the Re=25 flow is absolutely stable since the most
unstable mode is associated with a negative real eigenvalue for c=0. �r increases with increase
in c and achieves a positive value for a small range of disturbance speed. Maximum instability
is observed for the disturbance traveling at c∼0.54. The flow regains stability for disturbances
traveling at a speed greater than c∼0.57. Another peak in the variation in �r is observed for c∼1.
However, the flow remains stable to all these disturbances.

Figure 4 shows the vorticity field for the most unstable modes corresponding to various speeds
of the disturbance. The modes associated with c∼0.5 are mostly active in the near wake region
(x<20) and are reminiscent of the instability of the shear/mixing layer.

5.3. DTI of the LDEs

To investigate the correctness of the results predicted from the proposed global stability analysis,
a DTI of the LDEs is conducted. An instantaneous disturbance is introduced in the flow at t=0.
The y component of the velocity disturbance at a node lying next to the plate in the near wake
(0.04,0.6) is assigned a value of 0.1 at t=0.

5.3.1. Re=25 flow. The time evolution of the vorticity field for Re=25 flow with the introduction
of a point disturbance is shown in Figure 5. The similarity between the disturbance field for t<20
and the most unstable eigenmodes, shown in Figure 4, for 0.5�c�0.6 can be clearly observed.
The speed of the disturbance from the location of the vortex structures at various time instants is
estimated to be c∼0.55. This is in very good agreement with the c for which the fastest growing
mode is observed from the global LSA.

5.3.2. Estimation of the critical Re. DTI of the LDEs is conducted for other values of Re. We
define the energy of the disturbance in the computational domain as E(t)=1/2

∫
�u′ ·u′ d�. The

time evolution of the normalized energy of the disturbance, E(t)/E(0), is shown in Figure 6. E(0)
is the energy of the imposed disturbance at t=0.
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Figure 5. Re=25 flow past a flat plate obtained by direct time integration of the linearized disturbance
equations: time evolution of the vorticity field. An instantaneous disturbance is introduced in the flow at
t=0, which corresponds to assigning the y component of the velocity disturbance at (0.04,0.6) a value
of 0.1. The dark shades of grey (compared with the background) represent negative vorticity, whereas the

lighter shades indicate positive vorticity.

For Re�21 the energy of the disturbance field decreases monotonically with t . However, a
local peak in the energy is observed for Re�23. This is more clear from the close-up view shown
in Figure 6. For Re=21 and lesser, the flow is convectively stable and, therefore, a monotonic
decrease in energy with time is observed. For Re=23 and higher, the disturbance, for a certain
period of time, is amplified as it convects downstream. This leads to an increase in the energy
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Figure 6. Flow past a flat plate obtained by direct time integration of the linearized disturbance
equations: time evolution of the normalized energy field. An instantaneous disturbance is
introduced in the flow at t=0, which corresponds to assigning the y component of the velocity

disturbance at (0.04,0.6) a value of 0.1.

during this time interval. However, the flow is absolutely stable in this range of Re. Therefore,
the energy of the disturbance field in this finite domain settles down to zero (machine level zero
of the order of 10−14) after sufficiently long time. We note that the LSA predicts Rec∼22 while
the computations from DTI show that the critical Re is closer to 23. We believe that the results
from LSA are expected to be more accurate than DTI of the linearized equation. In linear DTI
an impulsive disturbance introduced at t=0 excites many modes of the flow. For Re that is very
slightly larger than Rec it is expected that only one mode is convectively unstable while all others
are stable. Therefore, even though the energy related to the unstable mode will grow with time, it
may get overcompensated by the decay of energy of all other stable modes. Thus, the linear DTI
in conjunction with the introduction of an impulsive disturbance can overpredict the critical Re.

To see this more clearly, we repeat the DTI of the linearized equation with a different set of
initial conditions. The computations are initiated with the real part of the most unstable eigenmode,
obtained from the global stability analysis at that Re. The time evolution of the normalized energy
of the disturbance, E(t)/E(0), is shown in Figure 7. From this figure it is very clear that at t=0+
the energy of the Re=21 flow decreases while it increases for Re=22 and higher. At Re=22
the increase in energy is very marginal as seen from the close-up view in Figure 7. From this we
conclude that the critical Re is close to 22 as predicted by the LSA. The excellent agreement between
the results from the global LSA and DTI of the LDEs confirms the correctness of the results.

5.4. Comparison with results from local analysis

Hultgren and Aggarwal [4] considered a Gaussian wake profile given as u∗ =1−se−y2 ln(2),
where the speed is normalized by the maximum value, y is normalized by the wake’s half-width
and s is a measure of the level of reverse flow. They used the linear stability theory for parallel
flows to analyze the stability of this profile. It was found that the critical Re for the von Karman-
type modes is 3.76 while it is 53.0 for the modes when symmetry conditions are enforced on wake
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Figure 7. Flow past a flat plate obtained by direct time integration of the linearized disturbance equations:
time evolution of the normalized energy field. The real part of the rightmost eigenmode obtained from
global linear stability analysis at each Re, and for that value of c at which the flow is convectively most

unstable, is used as an initial condition.

centerline, i.e. at y=0. Interestingly, the critical Re is independent of the reverse flow parameter s.
The Re, in their study, is based on the wake half-width and the maximum velocity difference. The
stability of the mixing-layer-type modes, for symmetry conditions at wake centerline, was further
studied by Castro [1]. An LSA was carried out for various values of H . This was achieved by
setting a free-slip condition on the velocity at the lateral boundary of the domain. It was found
that the critical Re for H =100, 10, 5 and 3 is 52.99, 53.06, 57.30 and 97.11, respectively.

We now compare our results from the global stability analysis of the non-parallel flow with the
ones from the local analysis of the parallel flow from Castro [1]. Recall that the present analysis
results in a Rec∼22. For the Re=22 flow we estimate the local Reynolds number, Rel, in the wake
based on the local wake half-width and the maximum velocity difference. Figure 8 shows the stream
wise variation in the effective value of the reverse flow parameter, s(x), half wake width and Rel. The
parameter s(x) is computed using the expression s(x)=(u(x, y=H)−u(x, y=0))/u(x, y=H),
whereas Rel is calculated based on the wake half-width at each x location and the maximum speed
difference given by s(x)u(x, y=H). The wake half-width, b(x), is the vertical distance from the
wake centerline where the velocity defect with respect to u(x, y=H) is one-half the maximum
defect at each location (=u(x,H)−u(x,0)). We note that there is a substantial variation in Rel and
that it achieves a maximum value of 60.66 at x=3.82. The local analysis of the Guassian profile
underpredicts the Rec slightly. Castro [1] found this value to be 57.30 for H =5. The difference
in the two sets of results is less than 6%.

To investigate the reason for the fair agreement between the results from the local and global
analysis, we compare the velocity profiles of the steady flow obtained from direct numerical
simulation with the Gaussian profile used by Castro [1] and Hultgren and Aggarwal [4]. Figure 9
shows the two sets of velocity profiles. The Gaussian profile, uG(x, y), has been plotted by
utilizing the s(x) and b(x) from the steady-state data. The following expression has been used:

uG(x, y)=u(x, y=H)[1−s(x)e−(y/b(x))2 ln(2)] (18)

From Figure 9 it can be observed that except in the very near wake (x<3), the Gaussian profile
is a good approximation to the velocity profile in the wake region. That, perhaps, explains the
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s(x)=(u(x, y=H)−u(x, y=0))/u(x, y=H)), half wake width and the local Reynolds number,
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Figure 9. Re=22 steady flow past a flat plate: velocity profiles at various streamwise locations shown
in solid lines. Also shown in broken lines are the profiles assuming a Gaussian mean profile given by

Equation (18). For reference, the plate is shown in the thick solid line and u=0 in the dotted line.

success of the local analysis in predicting a reasonable approximation to the critical Re for the
onset of convective instability of mixing layer modes for the normal flat plate.

5.5. Effect of H

From the analysis of the Gaussian wake profile, Hultgren and Aggarwal [4] found that the critical
Re for the shear layer mode is 53.0. The stability of the mixing-layer-type modes was further
studied by Castro [1]. An LSA was carried out for various values of H . This was achieved by
setting a free-slip condition on the velocity at the lateral boundary of the domain. The critical
Re for H =100, 10, 5 and 3 was found to be 52.99, 53.06, 57.30 and 97.11, respectively. It is
observed that the critical Re increases with decrease in H . Figure 10 shows the variation in the real
part of eigenvalue for the most unstable eigenmode for various Re and speed of the disturbance
for H =10 and 20. The critical Re for the onset of instability is ∼19 and 17.3 for H =10 and 20,
respectively. As was observed by Castro [1], the critical Re decreases with increase in H .
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Figure 10. Flow past a flat plate: real part of the eigenvalue corresponding to the most unstable eigenmode
for various c and Re for H =10 (left) and H =20 (right).

6. CONCLUSION

Global LSA of the flow past a normal flat plate has been carried out. The investigation is restricted
to symmetric modes of instability to preclude the von Karman-type of vortex shedding modes.
Therefore, only half of the plate is considered and symmetry conditions are applied at the wake
centerline. Most of the computations have been carried out for H =5. The critical Re for the
onset of convective instability is found to be approximately 22 and relates to the instability of
the separated mixing/shear layer. The results from the global LSA are in excellent agreement
with those from DTI of the LDEs. The disturbance field from the DTI appears to be quite
similar to the most unstable mode from LSA. Good match is also seen between the two sets
of results for the speed of propagation of the disturbance. The effect of blockage has also been
investigated. It is found that the critical Re, for the onset of the instability, decreases as the lateral
boundary of the domain is moved farther away. Rec is ∼22, 19 and 17.3 for H =5, 10 and 20,
respectively.

The results are compared with the ones from local analysis of the Gaussian wake profile carried
out by researchers, earlier. The Rec from the local analysis is 57.3. However, this value is based on
the wake half-width and the difference between the minimum and maximum speeds. The Re=22
steady flow from the direct numerical simulation is investigated to study the streamwise variation
in the wake profiles. The wake half-width and the difference between the minimum and maximum
speeds, at each streamwise station, vary quite significantly leading to a large variation in the local
Reynolds number, Rel. The peak value of Rel is 60.66 and is achieved at x=3.82. The difference
in the critical Rel from the local and global analyses is close to 6%. Further, it is found that except
in the near wake (x<3) the velocity profiles are very similar to the Gaussian wake profile. The
reasonably good prediction by the local analysis can be attributed to the similarity of the velocity
profiles in the wake of the plate to the Gaussian wake profile. Unlike the local analysis, the global
analysis provides the global mode shape.
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